
ABSTRACT
Optimization methodology employing CFD for the
aerodynamic design of automotive car styling is presented.
The optimization process consists of three stages: Design of
Experiments (DOE), Response Surface Modeling (RSM), and
optimization algorithm execution. RSM requires a number of
CFD calculations in order to ensure its accuracy, making it
difficult to apply the RSM to aerodynamic design
optimization. In order to resolve this issue, Adaptive Multi
Stage RSM (AMS-RSM) was conceived. This method
provided the response surface its required accuracy and
robustness. The optimization process was realized by
constructing an automatic optimization system consisting of
software.

NOMENCLATURE

Sampling number

Value of CD calculated by CFD

Value of CD predicted by RSM

RBF approximation

Expansion coefficients

Basis function

Non-negative real-valued function

Euclidean norm

Function spread parameter

INTRODUCTION
In the past few decades, a number of environmentally
friendly technologies in the automotive industry, e.g., high-
efficiency engines, low-rolling-resistance tires, lightweight
materials, have been developed. Automotive styling is also
regarded as an important factor in resolving environmental
issues by reducing drag force, which results in high fuel
efficiency. Automotive aerodynamicists, therefore, try to
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obtain improved car styling in terms of the coefficient of
drag, i.e., CD.

In conventional parametric studies of automotive
aerodynamics, car shape is varied by CAD, calculation
meshes are generated, and CFD calculations are performed.
As a consequence, a huge amount of time is consumed. Mesh
morphing techniques are, hence, employed in order to make
models parametrically and consequently, working time can be
reduced[1,2,3].

A difficulty in parametric study can expand as the number of
design parameters increases since they might have an effect
on each other. Consequently, a large amount of CFD
calculations are required so as to understand the behavior of
aerodynamics in the design space. If the behavior is non-
linear, then the difficulty can further expand. A marked
increase in CFD calculations is, however, not always
practical due to there being limits on computational power
availability. This is considered one reason for aerodynamic
optimization, based on CFD, not having been widely adopted
to date in aerodynamic design development. An aerodynamic
optimization system that seeks better CD values using a
reasonable amount of CFD calculation is desired.

This paper demonstrates an efficient automotive aerodynamic
optimization process and automatic system based on CFD.
The optimization process consists of three stages, DOE, RSM
and Optimization. In addition, AMS-RSM is introduced in
order to find optimal CD values more efficiently. So as to
realize the optimization flow, the CFD solver, mesh
morphing and optimization software were systematically
integrated and, consequently, the optimal CD values are
obtained automatically.

Firstly, it is shown that the optimization methodology was
devised by a 5-parameter study and secondly, the devised
methodology was tested using a more intricate practical case,
that is, a 12-parameter study. Lastly, AMS-RSM is explained.

OPTIMIZATION METHODOLOGY
The flow of the optimization (Figure 1) can be summarized as
follows;

1.  Prepare a base model and generate meshes

2.  Determine CFD calculation sampling points by DOE

3.  Create car models for each sampling point by morphing

4.  Calculate CD values for the models by CFD

5.  Create a response surface using the CFD results

6.  Obtain the optimal CD values by optimization algorithm
on the RSM

Fig. 1. Schematic of the optimization flow

The nucleus of the optimization process, i.e., DOE, RSM and
optimization algorithm were determined from the accuracy
and amount of CFD calculations involved. The accuracy is
defined as the difference between the obtained optimal CD
value by RSM and one by CFD. Here, a 5-parameter problem
shown in TABLE 1 and Figure 2 was studied.

TABLE 1. Five-parameter study

Fig. 2. Five-parameter
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1. DOE
A Latin Hypercube (LHC) sampling was adopted in our
optimization system. LHC is the DOE by which the design
space can be filled up uniformly with the small number of
sampling points. Full factorial and reduced factorial
samplings are often employed in other engineering
fields[4,5,6]. However, for automotive aerodynamic design
optimization, CFD calculations take an enormous amount of
time, especially for a multi-parametric problem. This is the
reason why LHC was chosen for our optimization system.

2. RSM
The accuracy of the response surface is significant since
optimal CD values are searched on the response surface via
an optimization algorithm. The relationship between CD and
design parameters is not always linear, and therefore, RSM
that is adapted to non-linear behavior should be employed.

Here, three types of the RSM were compared with each other,
i.e., Radial Basis Function (RBF), Gaussian process (GP),
and Kriging (KR). Fig. 3 shows the tendency of the mean
square error (MSE) for the number of samplings. It is
desirable for MSE to be small and constant for a sampling
number. MSE is given as follows;

(1)

Kriging shows large MSE values for the small number of
samplings and Gaussian processes show oscillation, which
means over-fitting of the response surface with the sampling
points. On the other hand, the RBF method shows low values
of the MSE and is not influenced by the number of
samplings. The RBF method, consequently, seems to be
satisfactory for this aerodynamic problem.

Fig. 3. MSE for samplings

The RBF has some different forms for basis functions, which
include Gaussian, Hardy's multiquadrics, inverse
multiquadrics, Duchon's spline, and Wendland's CSRBF [7].
The shape change of the response surface resulting in
fluctuations in the optimal CD values for the sampling
numbers should be avoided as much as possible by
employing an appropriate RBF. In order to examine the shape
change of the response surface, the trend of the optimum
value of each design parameter was investigated for RBFs
(Fig. 4). It is obvious that Hardy's multiquadrics interpolation
produced practically the same optimum values, i.e., almost
the same response surface, for the number of samplings. That
means the Hardy's multiquadrics has more robustness
compared with other RBFs. Hardy's multiquadrics
interpolation was, as a result, adopted for our optimization
system.
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Fig. 4. Transition of optimal design parameter values for
samplings

 
 
 

3. OPTIMIZATION ALGORITHM
The optimization algorithm is executed on the constructed
response surface. If the shape of the response surface is
simple, optimal CD values can be found without any
difficulty. However, if the shape of the response surface is
complicated, then some algorithms may not find the optimal
CD values. One such case can be found when a response
surface has some minima, i.e., a multi-modal problem.

The complexity of a problem, in general, grows as the
number of design parameters increases and, as a result, the
response surface can have some minima. Optimization
algorithms should not fall into the local minima. Although
there are many kinds of optimization algorithms, for example,
Generic Algorithms (GAs), Simulated Annealing (SA), the
Gradient Method, and the like[8,9], GAs and SA that do not
fall into the local minima are appropriate and, in fact, both of
them executed on the identical response surface gave almost
the same optimal CD values. In our system, SA was,
consequently, adopted. One of the reasons why it was
selected is that setting algorithm parameters is less
challenging than with GAs. Another is mentioned in the
following chapter, AMS-RSM.

OPTIMIZATION SYSTEM
In this research, incompressible steady flow simulation is
performed on RANS turbulence model, i.e., RNG 
model by CFD-ACE. Runtime for one calculation is
approximately five hours and some calculations could be
executed simultaneously. SCULPTOR is employed for mesh
morphing. The optimization process is controlled by
modeFRONTIER.

In terms of mesh morphing, some logic was added to our
system. CFD calculations can be diverged because of the
generation of negative meshes by morphing. In order to solve
such problems, an additional algorithm was composed that
regenerates new meshes when negative meshes generate, and
thereafter, executes CFD calculations. In addition, projected
car frontal areas might be changed by deformation of the car
shape, and accordingly, erroneous CD values could be
calculated if the projected frontal area value is not corrected.
In order to avoid this issue, the projected frontal area
recalculation algorithm was also added to the optimization
system.

APPLICATION TO A COMPLEX
CASE
The deformation of a number of design parameters can be
suggested in the early development phase. Accordingly, the
optimization methodology and system must be constructed so
as to cope with multi-parameter studies.
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Here, a 12-parameter study shown in TABLE 2 and Fig. 5
was tested so as to ascertain that the optimization method
contrived by the 5-parameter study can be applied to a more
complicated problem.

The shape of the response surface for the 12-parameter study
is more complicated compared to the 5-parameter study and
therefore, it seems to be difficult to predict optimal CD
values within reasonable accuracy. Here, two methods were
tested for the 12-parameter study. One was the method
confirmed by the 5-parameter study, i.e., LHC+RBF+SA, and
the other was one whose sampling was determined by a
generic algorithm (GA). These methods are shown in TABLE
3. The base model CD value is 0.316.

TABLE 2. Twelve-parameter study

Fig. 5. Twelve-parameter

TABLE 3. Comparison of optimization methods

TABLE 4. Results of optimization

240 samplings of method B was obtained by the first 10
samplings and their 24 evolutions. i.e., 10 times 24 are equal

to 240. In TABLE 4,  denotes the optimum CD

values predicted by the response surface and  denotes

the optimum CD values calculated by CFD. The 
values were calculated with the optimum design parameter
values obtained from the optimization. Optimization process
A offered a better result. The optimization method contrived
by the 5-parameter study can be employed for more
complicated parameter study.

However, the 3.7% accuracy of A might not be necessarily
small, which was approximately equivalent to +/−0.010 of its
CD values. This result came from the low accuracy of the
response surface. The reason for the low accuracy lies in the
fact that the number of samplings, 164, is not enough to
create the response surface of the 12-parameter study, and
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hence, more samplings or another approximation method is
required to construct the more accurate response surface so as
to predict more errorless values of CD.

AMS-RSM
In general, the number of samplings should be increased as
the number of design parameters grows in order to create a
response surface within reasonable accuracy. It is, however,
challenging to find the exact relationship between the number
of samplings and design parameters.

The number of samplings seems to be influenced by multiple
factors, e.g., the number of design parameters, sensitivity of
them on CD, interaction among two or more of them, non-
linear effect of them on CD. It is, however, impossible to
know some of those factors before CFD calculations, and
therefore, the required number of samplings is obscure.
Under this situation, it is important to obtain reasonably
optimal CD values regardless of the sampling number.

AMS-RSM makes it possible to dispose CFD sampling points
efficiently. Reasonably optimal CD values could be,
accordingly, searched for even if the sampling number is
larger or smaller than the desired number. The concept of this
method based on the idea that the optimum point is identical
to one of some local minima, that is, finding local minima
accurately leads to searching for the global optimum point
accurately.

AMS-RSM creates response surfaces successively. The 1st

response surface is constructed by sampling points all over
the design space and complementing those points, and
thereafter, a subsequent response surface is constructed by
focusing additional sampling points on the periphery of the
local minima of the 1st response surface (Fig. 6). As a result,
the accuracy of the response surface around the local minima
is improved and better CD values can be acquired. A detailed
procedure of AMS-RSM is shown below.

Fig. 6. Schematic diagram of AMS-RSM

 
 

PROCEDURE
1. Build the 1st response surface
The 1st response surface is created by the above-mentioned
method, i.e., the LHC and Hardy's multiquadrics. The RBF
approximation is as follows [10];

(2)

The Hardy's multiquadrics applied here is;

(3)

(4)

2. Search for local minima
Time evolution of the SA optimization is governed by the
temperature scheduler, namely “hot phase” and “cold phase.”
During the hot phase, the better values are searched for in a
broad region of the search space and thereafter, a rapid
downhill convergence occurs according to the steepest
descent heuristic algorithm during the cold phase (Fig. 7).
During the hot phase, unfavorable transitions can be accepted
according to a Boltzmann probability distribution.

Fig. 7. Schematic diagram of SA optimization during the
hot phase and cold phase

This characteristic of SA makes it possible for local minima
to be searched by deliberately making the ratio of the hot
phase zero.

Here, 9 points are generated on the 1st response surface and
optimization is executed by SA without the hot phase. This
setting consequently converged 9 points to each nearest local
minimum. The SA algorithm searched for local minima most
accurately compared with other algorithms, e.g., Broyden
Fletcher Goldfarb Shanno (BFGS) method. GAs also can be
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used in order to search for local minima. However, the
convergence of GAs is worse than that of SA algorithms
because of the characteristics of genetic operators, e.g.,
selection and reproduction. This is also the reason why SA
was adopted in our optimization system.

3. Add the 2nd sampling points
After the local minima and the global minimum on the 1st

response surface are found, sampling points are added by
LHC around them. Ten percent of the original range of each
design parameter is set as a design parameter range for the
2nd sampling.

4. Calculate the 2nd sampling CD values
CFD calculation is executed for the 2nd sampling.

5. Build the 2nd response surface
The 2nd response surface is created using the calculation
results of the 1st and 2nd samplings. A parameter of the
spread of the Hardy's multiquadrics interpolation, c, in Eq.
(4) should be appropriately changed so as to cope with non-
uniformity between the 1st and 2nd samplings and retain
accuracy of the 2nd response surface.

6. Search for the global minimum
An SA algorithm that includes the hot phase and the cold
phase is executed on the 2nd response surface and the global
optimal CD value is searched for. Once the global minimum
is found, it is compared with the CD values for the 2nd

sampling and the minimum for the 1st response surface.

The above procedure was tested for some sampling numbers
in order to investigate the effect of the AMS-RSM and
dependency on the sampling number. TABLE 5, Fig. 8 and
Fig. 9 show the distribution of the total sampling, the
comparison of the optimal CD values and accuracy between
the existing RSM and AMS-RSM algorithms, respectively.
The optimal CD values in Figs. 8, 9, 10 and 11 are the CFD

values, i.e., , obtained with the optimum design
parameter values by the RSM or AMS-RSM. In the present
case, CD was improved for a wide range of sampling
numbers by employing the AMS-RSM.

TABLE 5. Distribution of AMS-RSM sampling numbers

Fig. 8. Effect of AMS-RSM and robustness for the
number of samplings

Fig. 9. Accuracy of AMS-RSM for the number of
samplings

The existing RSM method shows the high dependency of the
optimal CD on the number of samplings. Also, it shows that
more samplings do not always result in the lower optimum
CD value. This fact, generally, makes the parametric study
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difficult. The optimal CD found by the AMS-RSM, on the
contrary, show the lower dependency on the number of
samplings. This is significant since the desirable number of
samplings is unknown unless the results of some sampling
numbers are compared to each other. Even if the generated
sampling numbers are not exactly desirable, reasonable CD
values can be obtained by the AMS-RSM.

RSM depends on not only the sampling number but also the
sampling pattern. The LHC sampling patterns can be
regarded as quasi-random samplings and, therefore, they do
not always give sampling patterns that result in good optimal
CD values. The AMS-RSM is also a countermeasure against
this kind of issue. Figures 10 and 11 demonstrate
comparisons of the optimal CD values between two sampling
patterns for the existing RSM and AMS-RSM respectively.
One is the LHC sampling (A). The other pattern is set by
replacing the samplings with the upper 3-percent CD values
of all samplings by the samplings with ordinary CD values
(B).

Fig. 10. Robustness of existing RSM for the two
sampling patterns

Fig. 11. Robustness of AMS-RSM for the two sampling
patterns

Figure 10 shows that the optimal CD for the RSM-B
fluctuates for the number of samplings similar to the RSM-A,
i.e., it does not have robustness. Also, the optimal CD can
change dramatically as the sampling pattern changes for the

same sampling number. For example, the difference between
the optimal CD values of the two sampling patterns is 0.007
for the 280 sampling.

On the other hand, Fig. 11 shows that the optimal CD values
for the AMS-RSM-B is more stable, similar to the AMS-
RSM-A, as compared to that for the RSM-A and RSM-B.
Also, the difference between the optimal CD values of the
two sampling patterns of the AMS-RSM is smaller compared
to that of the RSM. This denotes the optimal CD obtained by
AMS-RSM is not highly dependent on the sampling patterns,
that is, the AMS-RSM supplies the optimization process with
the robustness not only for the sampling number but also for
the sampling pattern.

Figures 12 and 13 show the base and optimized model, and
the flow around the models, respectively. The deformation of
some design parameters, e.g., side body panel, Rr-bumper, C-
pillar, had a strong effect on the CD values. On the other
hand, the deformation of Fr-window angle, diffuser angle and
roof had little effect. CD reduction was larger compared to
the existing RSM method (Fig. 8) and the accuracy was also
improved (Fig. 9), e.g., for the 320 sampling, +/−0.002 of its
CD values. In this case, no account of design parameter
constraints is taken, e.g., the rear window visibility, in order
to test system potential although it is possible to execute the
optimization under some constraints.

Fig. 12. Base and optimized model
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Fig. 13. Flow around the models

CONCLUSION
An optimization methodology for automotive aerodynamic
design was contrived and an automatic system that includes a
CFD solver, morphing software and optimization software
was developed. The optimization process consists of three
phases, i.e., LHC for DOE, RBF (Hardy's multiquadrics) for
RSM, and SA for optimization. This process was refined by
employing AMS-RSM methodology in order to cope with a
more complicated parameter study. The AMS-RSM
algorithm contributed to the following;

1.  Searching for lower optimal CD

2.  Supplying response surface accuracy

3.  Supplying sampling number and sampling pattern
robustness

As a result, aerodynamic design can be efficiently and
precisely forwarded in aerodynamic development. Man hours
are also effectively reduced as compared to conventional
parametric studies. In our 12-parameter study, the optimum
aerodynamic design was obtained within a week.
Consequently, valuable guidance in how to advance
aerodynamic design works was offered in the early
development phase.
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